If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2=8x+8
We move all terms to the left:
16x^2-(8x+8)=0
We get rid of parentheses
16x^2-8x-8=0
a = 16; b = -8; c = -8;
Δ = b2-4ac
Δ = -82-4·16·(-8)
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-24}{2*16}=\frac{-16}{32} =-1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+24}{2*16}=\frac{32}{32} =1 $
| 5=(g+9)÷4 | | 2(-10z+3)=6-20z | | -6(-3-6v)=-90 | | 4(w+5)=64 | | S(d)=7/4d+11 | | 4=f+10/10 | | 3(4d+1)−9d=6(2−d) | | 39=∣y+12∣ | | r/6-89=-97 | | 8k=7(-k+20)-5 | | q/7+30=40 | | x^2+x-12=x^2+4 | | p/8+21=24 | | -1=2-t | | 14b+11=-2-2+14b | | 54=6(p-80) | | 180=(8x)+(3x^2-6x)+(2x^2+3x+6) | | 3(h-74)=75 | | 180=8x+3x^2-6x+2x^2+3x+6 | | -16n+9(4n-4)=20n | | 64=-2(-2+6a) | | (-1÷-3(1))+(4÷3)=x | | 5h=510 | | 71=68-g | | r-111=243 | | 0–5y=30 | | v/14=9 | | 16+18m=-2 | | 14=-7/9u | | 2x²+11x-30=0 | | 2.5x-2=6 | | 230=c-380 |